255. Studies on Metal Complexes in Solution. Part II. ${ }^{1}$ Zinc Malonate and Phthalate.

By V. S. K. Nair.

Thermodynamic stability constants of the $1: 1$ complex of zinc ion with the malonate and phthalate ions have been determined at temperatures in the range $0-45^{\circ}$ in aqueous solution by means of a precise e.m.f. method. The thermodynamic quantities $\Delta G^{0}, \Delta H^{0}, \Delta S^{0}$, and ΔC_{p} for the association

$$
\mathrm{Zn}^{2+}{ }_{\mathrm{aq}}+\mathrm{A}^{2-}{ }_{\mathrm{aq}} \rightleftharpoons \mathrm{ZnA}_{\mathrm{aq}}
$$

reaction have been obtained, and are discussed.
In Part I of this Series, ${ }^{1}$ the phthalates of manganese, cobalt, and nickel were studied. The malonates of these metals were considered in another Series. ${ }^{2}$ It is of interest to see how data for zinc compare with those for the transition metals.

The e.m.f. cell was the same as that used previously:
or

$$
\begin{gather*}
\mathrm{H}_{2}, \mathrm{Pt}\left|\mathrm{H}_{2} \mathrm{Mal}\left(m_{1}\right), \mathrm{NaOH}\left(m_{3}\right), \mathrm{NaCl}\left(m_{4}\right), \mathrm{ZnCl}_{2}\left(m_{2}\right)\right| \mathrm{AgCl} \mid \mathrm{Ag} \tag{1}\\
\mathrm{H}_{2}, \mathrm{Pt}\left|\mathrm{KHPh}\left(m_{1}\right), \mathrm{ZnCl}_{2}\left(m_{2}\right)\right| \mathrm{AgCl} \mid \mathrm{Ag} \tag{2}
\end{gather*}
$$

where $\mathrm{H}_{2} \mathrm{Mal}$ is malonic acid, and KHPh is potassium hydrogen phthalate.

Experimental

Malonic acid was recrystallised from 1:1 ether-benzene containing 5\% of light petroleum (b. p. $60-80^{\circ}$), and was dried in vacuo at $40-50^{\circ}$ (Found: H, $4 \cdot 0 ; \mathrm{C}, 34 \cdot 5$. Calc. for $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{4}$: $\mathrm{H}, \mathbf{3 . 9} ; \mathrm{C}, \mathbf{3 4 . 6} \%$). AnalaR potassium hydrogen phthalate was used without further purification. Stock solutions, prepared by weight, were checked against standard solution of sodium hydroxide. Carbon dioxide-free sodium hydroxide solution, prepared by dilution of a saturated solution with air-free conductivity water under soda lime, was standardised and used. Zinc chloride was prepared by dissolving AnalaR zinc oxide in a weighed amount of standard hydrochloric acid (obtained from the constant-boiling acid), keeping the zinc oxide in excess, and filtering the solution through a sinter. The solution was analysed gravimetrically for zinc (as zinc ammonium phosphate) and for chloride (as silver chloride).

The method of preparing the cell solutions, the experimental procedure, and the e.m.f. cell have been described previously. ${ }^{3}$

Results and Discussion

The two dissociation constants, K_{1} and K_{2}, of phthalic acid, as well as K_{2} for malonic acid, over the temperature range $0-60^{\circ}$, have been reported by Hamer et al. ${ }^{4}$ Values for K_{1}, the primary dissociation constant of malonic acid, are available for the range $0-45^{\circ} .{ }^{2}$ In the e.m.f. cells (1) and (2), $m_{\mathrm{H}^{+}}$, the hydrogen ion molality, is given by

$$
-\log m_{\mathrm{H}^{+}}=\left(E-E^{0}\right) / k+\log \left(2 m_{2}+m_{4}\right)+2 \log \gamma_{1}
$$

where m denotes molality, E and E^{0} are the e.m.f. of the cell (corrected for hydrogen pressure and for temperature) and the standard electrode potential of the $\mathrm{Ag} \mid \mathrm{AgCl}$ electrode, respectively, and $k=2 \cdot 3026 \boldsymbol{R} T / F . \quad \gamma_{z}$, the mean activity coefficient of an ion of charge z, is obtained from the expression due to Davies: ${ }^{5}$

$$
-\log \gamma_{z}=A z^{2}\left[I^{\frac{1}{2}} /\left(1+I^{\frac{1}{2}}\right)-C I\right] .
$$

[^0]The concentrations of the various species are inter-related, leading to the ionic strength I:
and

$$
\begin{gathered}
I=\frac{1}{2}\left[m_{\mathrm{H}^{+}}+6 m_{2}-4 m_{1}+m_{3}+2 m_{4}+m_{\mathrm{HA}^{-}}\left(5+\frac{4 m_{\mathrm{H}^{+} \gamma_{1}^{2}}^{2}}{k_{1}}+\frac{8 k_{2}}{m_{\mathrm{H}^{+}+\gamma_{2}}}\right)\right] \\
m_{\mathrm{HA}^{-}}=\frac{2 m_{1}-m_{3}-m_{\mathrm{H}^{+}}}{1+\frac{2 m_{\mathrm{H}^{+} \gamma_{1}^{2}}^{2}}{k_{1}}} .
\end{gathered}
$$

Successive approximations were made to obtain constant values for ionic strength and

Table 1.

Zinc malonate						
	1	2	3	4	5	6
$10^{3} m_{1} \ldots$.	3.7550	$5 \cdot 6439$	$8 \cdot 3908$	10.9208	8.770	$9 \cdot 3537$
$10^{3} m_{2}$...........	3.6624	6.6647	$4 \cdot 3030$	8.9309	6.5063	6.3323
$10^{3} m_{3} \ldots$.	3.3373	4.7238	$7.8998{ }_{5}$	9.9133	8.0210	8.6507
$10^{3} m_{4} \ldots \ldots \ldots \ldots .$.	$0 \cdot 4237$	0.7711	$0 \cdot 4978{ }_{5}$	1.0333	0.7528	0.7326
$\left(E-E^{0}\right)$	$10^{3} \mathrm{I}$	$10^{4}\left[\mathrm{H}^{+}\right]$	$10^{3}\left[\mathrm{HA}^{-}\right]$	$10^{4}\left[\mathrm{~A}^{2-}\right]$	$10^{4}[\mathrm{MA}]$	$10^{-3} \mathrm{~K}$
At 0°						
1. 0.31533	14.31	$2 \cdot 461$	3.0155	$0 \cdot 418$	$2 \cdot 421$	$4 \cdot 31$
2. $0 \cdot 29195$	24.77	$3 \cdot 883$	$4 \cdot 2635$	$0 \cdot 423$	$3 \cdot 820$	$4 \cdot 66$
3. 0.31335	19.87	$2 \cdot 377$	6.7449	1.040	$5 \cdot 923$	$4 \cdot 50$
4. 0.28771	$35 \cdot 46$	$3 \cdot 631$	8.2565	0.960	9.139	$4 \cdot 62$
5. $0 \cdot 29759$	26.58	$3 \cdot 156$	6.7601	$0 \cdot 840$	7.042	$4 \cdot 85$
6. $0 \cdot 29951$	26.54	2.989	$7 \cdot 2697$	0.954	$7 \cdot 445$	$4 \cdot 69$
					Mean	$4 \cdot 61 \pm 0 \cdot 3$

At 15°							
1.	$0 \cdot 33087$	$14 \cdot 25$	$2 \cdot 675$	2.9943	$0 \cdot 383$	$2 \cdot 669$	$5 \cdot 33$
2.	$0 \cdot 30606$	24.68	$4 \cdot 249$	4.2220	$0 \cdot 385$	$4 \cdot 248$	$5 \cdot 88$
3.	$0 \cdot 32815$	19.73	$2 \cdot 633$	6.4018	0.934	$6 \cdot 448$	$5 \cdot 66$
4.	$0 \cdot 30202$	35.41	3.910	8.2484	0.899	$9 \cdot 381$	$5 \cdot 25$
5.	$0 \cdot 31222$	26.50	$3 \cdot 426$	6.7329	$0 \cdot 776$	$7 \cdot 378$	$5 \cdot 69$
6.	$0 \cdot 31407$	26.43	3.267	$7 \cdot 2281$	$0 \cdot 873$	$7 \cdot 873$	$5 \cdot 61$
						Mean	$5 \cdot 57 \pm 0 \cdot 3$
At 25°							
1.	$0 \cdot 34134$	$14 \cdot 21$	$2 \cdot 793$	2.9799	$0 \cdot 349$	$2 \cdot 835$	$6 \cdot 34$
2.	$0 \cdot 31581$	$24 \cdot 63$	$4 \cdot 419$	$4 \cdot 2073$	0.354	$4 \cdot 438$	$6 \cdot 85$
3.	$0 \cdot 33871$	$19 \cdot 66$	$2 \cdot 732$	6.6777	0.860	$6 \cdot 617$	6.45
4.	$0 \cdot 31107$	35.24	$4 \cdot 157$	8.1744	0.803	$9 \cdot 970$	$6 \cdot 43$
5.	$0 \cdot 32194$	26.41	3.596	$6 \cdot 6995$	0.704	$7 \cdot 701$	$6 \cdot 71$
6.	$0 \cdot 32402$	$26 \cdot 37$	3.407	$7 \cdot 2081$	$0 \cdot 799$	$8 \cdot 117$	$6 \cdot 47$
						Mean	6.54 ± 0.3
At 35°							
I.	$0 \cdot 35243$	$14 \cdot 18$	$2 \cdot 842$	$2 \cdot 9683$	$0 \cdot 319$	$2 \cdot 947$	$7 \cdot 37$
2.	$0 \cdot 32601$	24.58	$4 \cdot 507$	$4 \cdot 1852$	$0 \cdot 322$	$4 \cdot 644$	(8.08)
3.	$0 \cdot 34953$	$19 \cdot 63$	$2 \cdot 800$	$6 \cdot 6578$	0.781	$6 \cdot 753$	$7 \cdot 41$
4.	$0 \cdot 32078$	35.10	$4 \cdot 295$	$8 \cdot 1053$	0.721	10.467	$7 \cdot 74$
5.	$0 \cdot 33236$	26.34	3.666	$6 \cdot 6730$	0.643	7.930	$7 \cdot 76$
6.	$0 \cdot 33416$	$26 \cdot 24$	$3 \cdot 519$	$7 \cdot 1530$	0.718	$8 \cdot 530$	$7 \cdot 79$
						Mean	$7 \cdot 61 \pm 0.3$
At 45°							
1.	$0 \cdot 36354$	$14 \cdot 13$	$2 \cdot 889$	2.9448	$0 \cdot 281$	$3 \cdot 126$	$9 \cdot 05$
2.	$0 \cdot 33645$	24.52	$4 \cdot 548$	$4 \cdot 1558$	$0 \cdot 287$	$4 \cdot 827$	$9 \cdot 65$
3.	$0 \cdot 36077$	$19 \cdot 51$	$2 \cdot 823$	6.6135	$0 \cdot 696$	$7 \cdot 148$	$9 \cdot 05$
4.	$0 \cdot 33056$	34.90	$4 \cdot 421$	$8 \cdot 0017$	$0 \cdot 627$	$11 \cdot 142$	$9 \cdot 78$
5.	$0 \cdot 34260$	26.20	3.759	6.6001	$0 \cdot 562$	$8 \cdot 422$	$9 \cdot 71$
6.	$0 \cdot 34438$	26.08	3.618	$7 \cdot 0715$	$0 \cdot 625$	9.081	$9 \cdot 82$
						Mean	9.51 ± 0.4

Table 1. (Continued.)

phthalate								
	$10^{3} m_{1}$	$10^{3} m_{2}$					$10^{3} m_{1}$	$10^{3} m_{2}$
1.	$7 \cdot 1145$	$6 \cdot 1410$	6. 11			11.	$18 \cdot 433$	13.981
2.	$9 \cdot 8923$	$7 \cdot 8618$	7. 20			12.	$22 \cdot 448$	13.905
3.	$13 \cdot 700$	$10 \cdot 663$	8.10			13.	14.524	$9 \cdot 4632$
4.	$17 \cdot 637$	11.591	9.3			14.	17.279	11.205
5.	9.9334	$7 \cdot 4392$	10. 12			15.	$10 \cdot 553$	$6 \cdot 2043$
	$\left(E-E^{0}\right)$	$10^{3} \mathrm{I}$	$10^{4}\left[\mathrm{H}^{+}\right]$	$10^{3}\left[\mathrm{HA}^{-}\right]$	$10^{4}\left[\mathrm{~A}^{2-}\right]$		10^{4} [MA]	$10^{-1} \mathrm{~K}$
At 0°, ${ }^{\circ}$								
1.	$0 \cdot 32127$	$25 \cdot 1$	1.292	6.0136	3-107		3.043	5-48
2.	$0 \cdot 31357$	$32 \cdot 6_{5}$	$1 \cdot 447$	8.2954	$4 \cdot 090$		$4 \cdot 618$	$5 \cdot 69$
3.	$0 \cdot 30456$	$44 \cdot 3$	1.632	11.382	$5 \cdot 413$		$6 \cdot 990$	$5 \cdot 71$
4.	$0 \cdot 30235$	$50 \cdot 7$	1.681	$14 \cdot 665$	$7 \cdot 036$		$8 \cdot 668$	$5 \cdot 47$
5.	$0 \cdot 31499$	$31 \cdot 4$	1.433	$8 \cdot 3378$	$4 \cdot 118$		$4 \cdot 582$	$5 \cdot 84$
6.	$0 \cdot 30798$	$39 \cdot 3$	1.546	9.7751	$4 \cdot 752$		$5 \cdot 710$	$5 \cdot 52$
7.	$0 \cdot 29857$	$57 \cdot 7$	1.782	$17 \cdot 123$	$8 \cdot 052$		10.763	$5 \cdot 72$
8.	$0 \cdot 31636$	$30 \cdot 8$	1.413	8.7579	$4 \cdot 358$		$4 \cdot 595$	$5 \cdot 79$
9.	$0 \cdot 35073$	9.98	0.9032	$2 \cdot 7277$	1.664		0.9348	$5 \cdot 70$
							Mean	$5 \cdot 66 \pm 0 \cdot 2$
At 15°								
1.	$0 \cdot 33726$	$24 \cdot 9$	1.390	$5 \cdot 9234$	3.068		3.583	6.76
2.	$0 \cdot 32937$	32.5	1.544	$8 \cdot 1788$	$4 \cdot 083$		5.256	6.73
3.	0.31991	$44 \cdot 0_{5}$	1.738	11.217	5.416		$7 \cdot 8615$	6.69
4.	0.31752	$50 \cdot 3$	1.797	$14 \cdot 446$	$7 \cdot 022$		$9.832{ }^{\text {b }}$	6.51
5.	0.33117	$31 \cdot 3$	1.510	$8 \cdot 2386$	$4 \cdot 165$		$5 \cdot 064$	$6 \cdot 60$
6.	0.32322	$39 \cdot 1$	$1 \cdot 662$	$9 \cdot 6207$	$4 \cdot 699$		6.583	$6 \cdot 69$
7.	$0 \cdot 31356$	$57 \cdot 3$	1.903	16.866	$8 \cdot 047$		$12 \cdot 115$	6.75
8.	$0 \cdot 33259$	$30 \cdot 6$	1.501	$8 \cdot 6430$	$4 \cdot 372$		5.198	6.78
							Mean	6.69 ± 0.2
At 25°								
1.	$0 \cdot 34842$	$24 \cdot 8$	1.426	$5 \cdot 8738$	2.965		3.952	7.91
2.	$0 \cdot 34028$	$32 \cdot 3$	1.583	$8 \cdot 1085$	$3 \cdot 952$		$5 \cdot 759$	$7 \cdot 83$
3.	$0 \cdot 33054$	$43 \cdot 8$	1.781	11.120	$5 \cdot 254$		8.5325	$7 \cdot 71$
4.	$0 \cdot 32778$	$50 \cdot 0$	1.861	14.290	6.724		10.94	$7 \cdot 81$
5.	0.34209	$31 \cdot 1$	1.552	$8 \cdot 1659$	$4 \cdot 021$		$5 \cdot 592$	$7 \cdot 76$
6.	0.33386	$38 \cdot 9$	1.712	9.5271	4.522		$7 \cdot 253$	$7 \cdot 87$
7.	$0 \cdot 32393$	$57 \cdot 0$	1.953	16.710	7.794		13.175	$7 \cdot 84$
8.	$0 \cdot 34364$	$30 \cdot 4$	1.537	8.5726	$4 \cdot 238$		$5 \cdot 703_{5}$	$7 \cdot 88$
9.	0.38128	9.91	0.967	$2 \cdot 6847$	$1 \cdot 639$		$\begin{gathered} 1 \cdot 206_{5} \\ \text { Mean } \end{gathered}$	$\begin{aligned} & 7 \cdot 80 \\ & 7 \cdot 82 \pm 0 \cdot 1 \end{aligned}$
								$7 \cdot 82 \pm 0 \cdot 1$
At 35°								
2.	$0 \cdot 35091$	$32 \cdot 0$	1.639	8.0068	$3 \cdot 651$		6.596	10.03
4.	$0 \cdot 33826$	$49 \cdot 6$	1.908	$14 \cdot 129$	6.192		$12 \cdot 21$	$9 \cdot 65$
6.	$0 \cdot 34459$	$38 \cdot 6$	1.753	9.4251	$4 \cdot 241$		8.065	9.65
7.	$0 \cdot 33395$	56.4	2.028	16.474	$7 \cdot 182$		15.00	10.07
8.	$0 \cdot 35450$	$30 \cdot 2$	1.583	8.4744	$3 \cdot 937$		6.518	10.00
9.	0.39389	$9 \cdot 85$	0.976	$2 \cdot 6680$	1.557		1.377	9.56
10.	$0 \cdot 33808$	$45 \cdot 4$	1.886	10.061	$4 \cdot 409$		$9 \cdot 318$	$9 \cdot 64$
11.	$0 \cdot 33178$	57.0	2.063	14.599	6.279		13.915	$9 \cdot 91$
12.	$0 \cdot 33228$	60.3	2.054	17.862	$7 \cdot 854$		$16 \cdot 10$	9.72
13.	$0 \cdot 34486$	$40 \cdot 7$	1.769	$11 \cdot 719_{5}$	$5 \cdot 307$		9.601	$9 \cdot 76$
14.	$0 \cdot 33938$	$48 \cdot 2$	1.883	13.963	6.196		11.83	$9 \cdot 65$
15.	$0 \cdot 35885$	27.9	1.511	$8 \cdot 6541$	$4 \cdot 125$		6.127	$9 \cdot 85$
							Mean	9.79 ± 0.3
At 45°								
1.	$0 \cdot 37146$	24.5	$1 \cdot 457$	5.7741	$2 \cdot 575$		$4 \cdot 856$	11.81
2.	$0 \cdot 36262$	31.9	1.629	7.9547	$3 \cdot 409$		$7 \cdot 094$	11.88
3.	$0 \cdot 35166$	$43 \cdot 1$	1.872	$10 \cdot 850$	$4 \cdot 419$		10.76	12.37
4.	$0 \cdot 34914$	$49 \cdot 1$	1.926	$13.98{ }_{5}$	5•764		$13 \cdot 46$	12.05
5.	$0 \cdot 36446$	$30 \cdot 7$	1.601	8.0077	3.455		6.974	11.97
6.	$0 \cdot 35578$	$38 \cdot 4$	1.762	$9 \cdot 3397$	3.903		8.834	11.83
9.	0.40677	9•77	0.976	2-6524	$1 \cdot 439$		1.572	12.07
							Mean	12.0 ± 0.3

individual ionic concentrations, and finally the thermodynamic stability constant of the 1:1 complex ZnA ;

$$
K=\frac{m_{\mathrm{ZnA}}}{m_{\mathrm{Zn}^{2}+} \cdot m_{\mathrm{A}^{3}-} \cdot \gamma_{2}^{2}},
$$

by programming an "Elliott 803 " computer. The results are given in Table 1. It was necessary to assume only formation of the $1: 1$ complex, as is revealed by the constancy of the K values in the ionic-strength range used. In the original Davies equation, the coefficient C was 0.2 , but it has been recently suggested ${ }^{6}$ that, in some cases, $C=0.3$ might

Plot of $\log K$ against T^{-1}. A, Zinc phthalate (left-hand ordinates). B , Zinc malonate (right-hand ordinates).

give a better agreement among the K values. However, Nancollas and his co-workers ${ }^{7}$ have found that the choice is arbitrary, either value giving consistent K values in the case of many 2:2 electrolytes. In the present work, we use $C=0 \cdot 2$.

The stability constant for zinc malonate at 25° is to be compared with $K=4.76 \times 10^{3}$, obtained by means of the conductivity method. ${ }^{8}$ There are no comparable results for zinc phthalate.

As with the dicarboxylates of the transition metals, the zinc salts also give plots of $\log K$ against T^{-1} (shown in the Figure) which are non-linear. A quadratic equation,

$$
\log K=a+b T+c T^{2}
$$

fits the results, the best values for a, b, and c being obtained by the method of least-squares. These values are given in Table 2. Values of $\log K$ calculated from this equation, for any

Table 2.
Parameters for temperature-dependence of $\log K$.

	a	$-10^{2} b$	$10^{5} \mathrm{c}$
ZnMal	8.8941	$4 \cdot 1469$	8.1835
ZnPh	$7 \cdot 6348$	3.9555	$7 \cdot 9371$

temperature, agree with the experimental mean value to better than 0.5%.
$\Delta G^{0}, \Delta H^{0}, \Delta S^{0}$, and ΔC_{p} for the formation reaction

$$
\mathrm{Zn}^{2+}+\mathrm{A}^{2-} \longrightarrow \mathrm{ZnA}
$$

in aqueous solution, are obtained from $\Delta G^{0}=-2 \cdot 3026 \boldsymbol{R} T \log K, \Delta H^{0}=2 \cdot 3026$ $\boldsymbol{R} T^{2}(b+2 c T), \quad \Delta C_{\mathrm{p}}=4 \cdot 6052 \boldsymbol{R} T(b+3 c T)$, and $\Delta S^{0}=\left(\Delta H^{0}-\Delta G^{0}\right) / 298 \cdot 1$, and are given in Table 3.

[^1]Table 3.
Thermodynamic functions for complex-formation.

Reaction	$\begin{gathered} \Delta H^{0} \\ \text { (kcal. } \text { mole }^{-1} \text {) } \end{gathered}$	$\begin{gathered} -\Delta G^{0} \\ \left(\mathrm{kcal} . \mathrm{mole}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta S^{0} \\ \text { (cal. deg. }{ }^{-1} \text { mole }^{-1} \text {) } \end{gathered}$	$\begin{gathered} \Delta C_{\mathrm{p}} \\ \text { (cal. deg. } \end{gathered}$
$\mathrm{Zn}^{2+}+\mathrm{Mal}^{2-} \longrightarrow \mathrm{ZnMal}$	2.98 ± 0.1	5.20 ± 0.02	27.4 ± 0.4	86.5 ± 20
$\mathrm{Zn}^{2+}+\mathrm{Ph}^{2-} \longrightarrow \mathrm{ZnPh}$	3.16 \pm - 1	3.95 ± 0.02	$23 \cdot 8 \pm 0 \cdot 4$	85.7 ± 20

As with the transition-metal dicarboxylates, the enthalpy terms oppose the formation of zinc dicarboxylates from hydrated zinc ions. However, the reaction is brought about by the positive entropy-change associated with the charge neutralisation.
$\Delta S_{\mathrm{hyd}}(\mathrm{ZnA})$ has been calculated from the relationship:

$$
\Delta S_{\mathrm{hyd}}(\mathrm{ZnA})=\Delta S^{0}+S^{0}\left(\mathrm{Zn}^{2+}\right)+S^{0}\left(\mathrm{~A}^{2-}\right)-S_{\mathrm{g}}(\mathrm{ZnA})
$$

where the subscripts indicate hydration and gas entropies. Calculation of $S_{g}(\mathrm{MA})$ has been described elsewhere. ${ }^{9} \quad S^{0}\left(\mathrm{~A}^{2-}\right)$ was obtained from $S_{\mathrm{g}}\left(\mathrm{A}^{2-}\right)$ and $\Delta S_{\mathrm{hyd}}\left(\mathrm{A}^{2-}\right)$, the latter having been estimated from a plot of $\Delta S_{\text {hyd }}$ of bivalent anions against $r^{-1} . S^{0}\left(\mathrm{Zn}^{2+}\right)$ is reported by Staveley and Randall ${ }^{10 a}$ and by Latimer. ${ }^{10 b}$ The results are given in Table 4.

Table 4.
Entropy values (cal. deg. ${ }^{-1}$ mole $^{-1}$).

Species	ΔS^{0}	$S^{0}\left(\mathrm{Zn}^{2+}\right)$	$S^{0}\left(\mathrm{~A}^{2-}\right)$	$S_{\mathrm{g}}(\mathrm{ZnA})$	$-\Delta S_{\mathrm{hyd}}(\mathrm{ZnA})$
$\mathrm{ZnMal} \ldots \ldots \ldots \ldots \ldots$.	$\mathbf{2 7 \cdot 4}$	$-25 \cdot 45$	$\mathbf{5 \cdot 5}$	$70 \cdot 4$	$62 \cdot 95$
$\mathrm{ZnPh} \ldots \ldots \ldots \ldots \ldots$.	$23 \cdot 8$	$-25 \cdot 45$	$\mathbf{4 . 6}$	$73 \cdot 7$	70.75

It is of interest to consider whether the thermodynamic functions for bivalent-metal ion-pairs reveal any information about the type of bonding. The relevant functions are given in Table 5, in which the data for the sulphates are taken from ref. 11.

Table 5.
Thermodynamic data for metal ion-pairs.
(1. Sulphate.
2. Malonate. 3. Phthalate.)

In all of these cases of ion-association, in which ionic ligands take part, the enthalpy term is opposing the reaction, which is brought about by the very favourable gain in entropy. It is significant, however, that the heat-change is less unfavourable for cobalt and nickel than for manganese and zinc. It has been found ${ }^{12}$ for transition-metal ions that, if the calculated crystal-field stabilisation energies, obtained from spectroscopic Δ values, are subtracted from their heats of hydration, the resultant hydration energies

[^2]show a linear variation from V^{2+} to Zn^{2+}. Similarly, it may be seen that the ligand-field effects will contribute to the increased stability of Co^{2+} and Ni^{2+} complexes, thereby lowering the unfavourable ΔH term, whereas no such ligand-field contribution will take place in the cases of Mn^{2+} and Zn^{2+}, which have d^{5} and d^{10} structures. The interaction between the metal ion and the ligand in all these cases is mainly electrostatic, and $-\Delta S_{\text {hyd }}$ (MA) varies linearly with $r_{\mathrm{c}}{ }^{-1}$, where r_{c} is the cationic radius.

[^0]: 1 Part I, Desai and Nair, J., 1962, 2360.
 ${ }^{2}$ Nair and Nancollas, J., 1961, 4367.
 ${ }^{3}$ Nair and Nancollas, J., 1958, 4144.
 ${ }^{4}$ Hamer, Pinching, and Acree, J. Res. Nat. Bur. Stand., 1945, 35, 539; Hamer and Acree, ibid., p. 381; Hamer, Burton, and Acree, ibid., 1940, 24, 292.
 ${ }^{5}$ Davies, J., 1938, 2093.

[^1]: ${ }^{6}$ C. W. Davies, " Ion Association," Butterworths, London, 1962.
 7 Brannan, Dunsmore, and Nancollas, J., 1964, 304; Brannan and Nancollas, Trans. Faraday Soc., 1962, 58, 354.
 ${ }^{8}$ Money and Davies, Trans. Faraday Soc., 1932, 28, 609.

[^2]: ${ }^{9}$ Nair and Nancollas, $J ., 1958,3706$.
 ${ }^{10}$ (a) Staveley and Randall, Discuss. Faraday Soc., 1958, 26, 157; (b) Latimer, "Oxidation Potentials," Prentice-Hall Inc., New York, 1953.
 ${ }^{11}$ Nair and Nancollas, $J ., 1958,3706$; 1959, 3934.
 ${ }^{12}$ L. E. Orgel, "An Introduction to Transition-Metal Chemistry. Ligand-field Theory," Methuen, London, 1960, p. 73.

