255. Studies on Metal Complexes in Solution. Part II.¹ Zinc Malonate and Phthalate.

By V. S. K. NAIR.

Thermodynamic stability constants of the 1:1 complex of zinc ion with the malonate and phthalate ions have been determined at temperatures in the range $0-45^{\circ}$ in aqueous solution by means of a precise e.m.f. method. The thermodynamic quantities ΔG^0 , ΔH^0 , ΔS^0 , and ΔC_p for the association

 $Zn^{2+}_{aq} + A^{2-}_{aq} \Longrightarrow ZnA_{aq}$

reaction have been obtained, and are discussed.

IN Part I of this Series,¹ the phthalates of manganese, cobalt, and nickel were studied. The malonates of these metals were considered in another Series.² It is of interest to see how data for zinc compare with those for the transition metals.

The e.m.f. cell was the same as that used previously:

$$H_2, Pt \mid H_2Mal(m_1), NaOH(m_3), NaCl(m_4), ZnCl_2(m_2) \mid AgCl \mid Ag$$
(1)

(2)

or

where H₂Mal is malonic acid, and KHPh is potassium hydrogen phthalate.

EXPERIMENTAL

 $H_{2},Pt \mid KHPh(m_{1}),ZnCl_{2}(m_{2}) \mid AgCl \mid Ag$

Malonic acid was recrystallised from 1:1 ether-benzene containing 5% of light petroleum (b. p. 60–80°), and was dried in vacuo at 40–50° (Found: H, 4.0; C, 34.5. Calc. for $C_3H_3O_4$: H, 3.9; C, 34.6%). AnalaR potassium hydrogen phthalate was used without further purification. Stock solutions, prepared by weight, were checked against standard solution of sodium hydroxide. Carbon dioxide-free sodium hydroxide solution, prepared by dilution of a saturated solution with air-free conductivity water under soda lime, was standardised and used. Zinc chloride was prepared by dissolving AnalaR zinc oxide in a weighed amount of standard hydrochloric acid (obtained from the constant-boiling acid), keeping the zinc oxide in excess, and filtering the solution through a sinter. The solution was analysed gravimetrically for zinc (as zinc ammonium phosphate) and for chloride (as silver chloride).

The method of preparing the cell solutions, the experimental procedure, and the e.m.f. cell have been described previously.³

RESULTS AND DISCUSSION

The two dissociation constants, K_1 and K_2 , of phthalic acid, as well as K_2 for malonic acid, over the temperature range $0-60^{\circ}$, have been reported by Hamer et al.⁴ Values for K_1 , the primary dissociation constant of malonic acid, are available for the range $0-45^{\circ,2}$. In the e.m.f. cells (1) and (2), $m_{\rm H^+}$, the hydrogen ion molality, is given by

$$-\log m_{\rm H^+} = (E - E^0)/k + \log (2m_2 + m_4) + 2\log \gamma_1,$$

where m denotes molality, E and E^0 are the e.m.f. of the cell (corrected for hydrogen pressure and for temperature) and the standard electrode potential of the Ag|AgCl electrode, respectively, and $k = 2.3026 \mathbf{R} T / F$. γ_z , the mean activity coefficient of an ion of charge z, is obtained from the expression due to Davies : 5

$$-\log \gamma_z = A z^2 [I^{\frac{1}{2}}/(1 + I^{\frac{1}{2}}) - CI].$$

¹ Part I, Desai and Nair, J., 1962, 2360. ² Nair and Nancollas, J., 1961, 4367.

Nair and Nancollas, J., 1953, 4144.
Hamer, Pinching, and Acree, J. Res. Nat. Bur. Stand., 1945, 35, 539; Hamer and Acree, *ibid.*, p. 381; Hamer, Burton, and Acree, *ibid.*, 1940, 24, 292.

⁵ Davies, J., 1938, 2093.

The concentrations of the various species are inter-related, leading to the ionic strength I:

$$I = \frac{1}{2} \left[m_{\mathrm{H}^{+}} + 6m_{2} - 4m_{1} + m_{3} + 2m_{4} + m_{\mathrm{HA}^{-}} \left(5 + \frac{4m_{\mathrm{H}} + \gamma_{1}^{2}}{k_{1}} + \frac{8k_{2}}{m_{\mathrm{H}} + \gamma_{2}} \right) \right],$$

and
$$m_{\mathrm{HA}^{-}} = \frac{2m_{1} - m_{3} - m_{\mathrm{H}^{+}}}{1 + \frac{2m_{\mathrm{H}} + \gamma_{1}^{2}}{k_{1}}}.$$

Successive approximations were made to obtain constant values for ionic strength and

	Zinc malonate						
		1	2	3	4	5	6
	$10^3 m_1$	3.7550	5.6439	8.3908	10.9208	8.770	9.3537
	$10^{3}m_{2}$	3.6624	6.6647	4.3030	8.9309	6.5063	6.3323
	10^3m_3	3.3373	4.7238	7.8998_{5}	9.9133	8.0210	8.6507
	$10^{3}m_{4}$	0.4237	0.7711	0.4978_{5}	1.0333	0.7528	0.7326
	$(E - E^{0})$	10³ <i>I</i>	104[H+]	10 ³ [HA-]	104ſA²-٦	104[MA]	$10^{-3}K$
	· · · ·			At 0°			
1.	0.31533	14.31	$2 \cdot 461$	3.0155	0.418	2.421	4·31
2.	0.29195	24.77	3.883	4.2635	0.423	3.820	4 ·66
3.	0.31335	19.87	2.377	6.7449	1.040	5.923	4.50
4.	0.28771	35.46	3.631	8.2565	0.960	9.139	4.62
5.	0.29759	26.58	3.156	6.7601	0.840	7.042	4.85
ю.	0.29951	20.94	2.989	7.2697	0.954	7·445 Mean	4.69 4.61 + 0.3
				At 15°			
1.	0.33087	14.25	2.675	2.9943	0.383	2.669	5.33
2.	0.30606	24.68	4.249	4.2220	0.385	4.248	5.88
3.	0.32815	19.73	2.633	6.4018	0.934	6.448	5.66
4.	0.30202	30.41	3.910	8.2484	0.899	9.381	5.60
о. 6	0.31407	26.43	3.420	7.9981	0.873	7.879	5.61
۰.	0 01101	20 10	0 201	1 2201	0010	Mean	5.57 ± 0.3
				At 25°			
1	0.34134	14.21	2.793	2.0700	0.340	9.835	6.34
2	0.31581	24.63	4.419	4.2073	0.354	4.438	6.85
3.	0.33871	19.66	2.732	6.6777	0.860	6.617	6.45
4.	0.31107	35.24	4.157	8.1744	0.803	9.970	6.43
5.	0.32194	26.41	3.596	6.6995	0.704	7.701	6.71
6.	0.32402	26.37	$3 \cdot 407$	7.2081	0.799	8.117	6.47
						Mean	6.54 ± 0.3
				At 35°			
1.	0.35243	14.18	2.842	2.9683	0.319	2.947	7.37
2.	0.32601	24.58	4.507	4.1852	0.322	4.644	(8.08)
3.	0.34953	19.63	2.800	6.6578	0.781	6.753	7.41
4.	0.32078	35.10	4.295	8.1053	0.721	10.467	7.74
Э. с	0.33236	26.34	3.066	6.6730	0.643	7.930	7.76
0.	0.22410	20.24	3.919	7.1530	0.718	8.530 Mean	$7.79 \\ 7.61 + 0.3$
				A 4 4 5 9			
,	0.00074	14.10	2 000	At 40	0.001	0.100	0.07
1.	0.36354	14.13	2.889	2.9448	0.281	3.126	9.05
4.	0.33040	24.92 10.51	4.049	4.1998	0.287	4.927	9.05
3. 4	0.33056	34.90	4.491	8.0017	0.627	11.140	9.78
5.	0.34260	26.20	3.759	6.6001	0.562	8.422	9.71
6.	0.34438	26.08	3.618	7.0715	0.625	9.081	9.82
						Mean	9.51 + 0.4

TABLE 1.

TABLE 1. (Continued.)

			Z	linc phthala	te			
	$10^{3}m_{1}$	$10^{3}m_{2}$	10	$^{3}m_{1}$	$10^{3}m_{2}$		$10^{3}m_{1}$	$10^{3}m_{2}$
1.	7.1145	6.1410	6. 11·	711	9.5784	11.	18.433	13.981
2.	9.8923	7.8618	7. 20.	708	13.085	12.	$22 \cdot 448$	13.905
3.	13.700	10.663	8. 10.	407	7.0522	13.	14.524	9.4632
4.	17.637	11.591	9. 3 ∙	1571	$2 \cdot 2830$	14.	$17 \cdot 279$	11.205
5.	9.9334	$7 \cdot 4392$	10. 12·	618	11.644	15.	10.553	6.2043
	$(E - E^{0})$	10³ <i>I</i>	104[H+]	10 ³ [HA-	-] 10 ⁴ [A ²	-1	104[MA]	$10^{-1}K$
				At 0°		-		
1.	0.32127	$25 \cdot 1$	1.292	6.0136	6 3 ·107	,	3.043	5.48
2.	0.31357	$32 \cdot 6_{5}$	1.447	8.2954	4 ·090)	4.618	5.69
3.	0.30456	44·3	1.632	11.382	5.413		6.990	5.71
4.	0.30235	50.7	1.681	14.665	7.036	i I	8.668	5.47
5. 6	0.31499	30.3	1.400	0.7751	5 4·110		4.082	0.84 5.59
7.	0.29857	57.7	1.782	17.123	8.052		10.763	5.72
8.	0.31636	30.8	1.413	8.7579	4.358		4.595	5.79
9.	0.35073	9.98	0.9032	2.7277	7 1.664		0.9348	5.70
							Mean	5.66 ± 0.2
				At 15°				
1.	0.33726	24.9	1.390	5.9234	1 3 ∙068		3.583	6.76
2.	0.32937	32.5	1.544	8.1788	4.083		5.256	6.73
3.	0.31991	44·05	1.738	11.217	5.416		7.8615	6.69 6.51
4. 5	0.31752	20·3 21.2	1.797	14·440 9.9996	3 4.165		9.832	0·01 6.60
5. 6	0.32322	39.1	1.662	9.6202	7 4·105		6.583	6.69
7.	0.31356	57.3	1.903	16.866	8.047		12.115	6.75
8.	0.33259	30.6	1.501	8.6430	4.372		5.198	6.78
							Mean	6.69 ± 0.2
				At 25°				
1.	0.34842	24.8	1.426	5.8738	3 2.965		3.952	7.91
2.	0.34028	$32 \cdot 3$	1.583	8.1085	5 3.952		5.759	7.83
3.	0.33054	43.8	1.781	11.120	5.254		8.532 ₅	7.71
4.	0.32778	50.0	1.861	14.290	6.724		10.94	7.81
Э. С	0.34209	31.1	1.22	8.165	9 4.021		5.592	7.76
0. 7	0.33303	57.0	1.053	9.0271	1 4.022		1200	7.84
8.	0.34364	30.4	1.535 1.537	8.5726	4.238		5.703.	7.88
9.	0.38128	9.91	0.967	2.6847	1.639		1.206	7.80
							Mean	7.82 ± 0.1
				At 35°				
2 .	0.32091	32.0	1.639	8.0068	3.651		6.596	10.03
4.	0.33826	49.6	1.908	14.129	6.192		12.21	9.65
6.	0.34459	38.6	1.753	9.4251	4.241		8.065	9.65
7.	0.33395	56.4	2.028	16.474	7.182		15.00	10.07
8. 0	0.30400	30.2	1.983	8.4744	E 3.937		0.918	0.56
10	0.33808	45.4	1.886	10.061	4.409		9.318	9.64
11.	0.33178	57.0	2.063	14.599	6.279		13.915	9.91
12.	0.33228	60.3	2.054	17.862	7.854		16.10	9.72
13.	0.34486	40.7	1.769	11.719_{5}	5.307		9.601	9.76
14.	0.33938	48.2	1.883	13.963	6.196		11.83	9.65
15.	0.35885	27.9	1.511	8.6541	4.125		6·127 Mean	9·85 9·79 - 0·3
				At 45°			mean	0.0 1 00
1	0.37146	24.5	1.457	5.7741	2.575		4.856	11.81
$\hat{\underline{2}}$	0.36262	31.9	1.629	7.9547	3.409		7.094	11.88
3.	0.35166	43.1	1.872	10.850	4.419		10.76	12.37
4.	0.34914	49.1	1.926	13·98 ₅	5.764		13.46	12.05
5.	0.36446	30.7	1.601	8.0077	3.455		6.974	11.97
б. С	0.35578	38.4	1.762	9.3397	3.903		8.834	11.83
9.	0.40011	9.11	0.810	2.0924	£ 1.439		Mean	$\frac{12.07}{12.0}\pm0.3$

individual ionic concentrations, and finally the thermodynamic stability constant of the 1:1 complex ZnA;

$$K = \frac{m_{\mathrm{ZnA}}}{m_{\mathrm{Zn}^{2+}} \cdot m_{\mathrm{A}^{2-}} \cdot \gamma_{2}^{2}},$$

by programming an "Elliott 803" computer. The results are given in Table 1. It was necessary to assume only formation of the 1:1 complex, as is revealed by the constancy of the K values in the ionic-strength range used. In the original Davies equation, the coefficient C was 0.2, but it has been recently suggested ⁶ that, in some cases, C = 0.3 might

give a better agreement among the K values. However, Nancollas and his co-workers ⁷ have found that the choice is arbitrary, either value giving consistent K values in the case of many 2:2 electrolytes. In the present work, we use C = 0.2.

The stability constant for zinc malonate at 25° is to be compared with $K = 4.76 \times 10^3$, obtained by means of the conductivity method.⁸ There are no comparable results for zinc phthalate.

As with the dicarboxylates of the transition metals, the zinc salts also give plots of log K against T^{-1} (shown in the Figure) which are non-linear. A quadratic equation,

 $\log K = a + bT + cT^2,$

fits the results, the best values for a, b, and c being obtained by the method of least-squares. These values are given in Table 2. Values of log K calculated from this equation, for any

TABLE 2.

Parameters for temperature-dependence of $\log K$.

	а	$-10^{2}b$	10 ⁵ c
ZnMal	8.8941	4.1469	8.1835
ZnPh	7.6348	3.9555	7.9371

temperature, agree with the experimental mean value to better than 0.5%. ΔG^0 , ΔH^0 , ΔS^0 , and ΔC_p for the formation reaction

$$Zn^{2+} + A^{2-} \longrightarrow ZnA$$

in aqueous solution, are obtained from $\Delta G^0 = -2.3026 \ \mathbf{R}T \log K$, $\Delta H^0 = 2.3026 \ \mathbf{R}T^2(b + 2cT)$, $\Delta C_p = 4.6052 \ \mathbf{R}T(b + 3cT)$, and $\Delta S^0 = (\Delta H^0 - \Delta G^0)/298.1$, and are given in Table 3.

⁶ C. W. Davies, "Ion Association," Butterworths, London, 1962.

⁷ Brannan, Dunsmore, and Nancollas, J., 1964, 304; Brannan and Nancollas, Trans. Faraday Soc., 1962, 58, 354.

⁸ Money and Davies, Trans. Faraday Soc., 1932, 28, 609.

TABLE 3.

Thermodynamic functions for complex-formation.

	ΔH^{0}	$-\Delta G^{0}$	ΔS^{0}	$\Delta C_{\mathbf{p}}$
Reaction	(kcal. mole ⁻¹)	(kcal. mole ⁻¹)	(cal. deg. ⁻¹ mole ⁻¹)	(cal. deg1)
$Zn^{2+} + Mal^{2-} \longrightarrow ZnMal \dots$	2.98 ± 0.1	$5\cdot 20~\pm~0\cdot 02$	$27\cdot4\pm0\cdot4$	86.5 ± 20
$Zn^{2+} + Ph^{2-} \longrightarrow ZnPh$	3.16 ± 0.1	3.95 ± 0.02	$23\cdot 8 \pm 0\cdot 4$	85.7 ± 20

As with the transition-metal dicarboxylates, the enthalpy terms oppose the formation of zinc dicarboxylates from hydrated zinc ions. However, the reaction is brought about by the positive entropy-change associated with the charge neutralisation.

 $\Delta S_{hvd}(ZnA)$ has been calculated from the relationship:

$$\Delta S_{hvd}(ZnA) = \Delta S^{0} + S^{0}(Zn^{2+}) + S^{0}(A^{2-}) - S_{g}(ZnA),$$

where the subscripts indicate hydration and gas entropies. Calculation of $S_{g}(MA)$ has been described elsewhere.⁹ $S^{0}(A^{2-})$ was obtained from $S_{g}(A^{2-})$ and $\Delta S_{hyd}(A^{2-})$, the latter having been estimated from a plot of ΔS_{hyd} of bivalent anions against r^{-1} . $S^{0}(Zn^{2+})$ is reported by Staveley and Randall ^{10a} and by Latimer.¹⁰⁶ The results are given in Table 4.

TABLE 4.

Entropy values (cal. deg.⁻¹ mole⁻¹).

∆ <i>S</i> ⁰ S'	o (Zn ²⁺) S ⁰	(A ²⁻) S_{g}	$(ZnA) - \Delta S$	hyd (ZnA)
27.4 -	$-25 \cdot 45$	5.5 7	70.4	32.95
- 23.8	$-25 \cdot 45$	4.6 7	73.7	70 ·75
	\S ⁰ S ⁰ 27·4 - 23·8 -	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\Delta S^0 = S^0 (Zn^{2+}) = S^0 (A^{2-}) = S_g$ $Z^{7.4} = -25.45 = 5.5$ $Z^{7.8} = -25.45 = 4.6$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

It is of interest to consider whether the thermodynamic functions for bivalent-metal ion-pairs reveal any information about the type of bonding. The relevant functions are given in Table 5, in which the data for the sulphates are taken from ref. 11.

TABLE 5.

		Thermodynamic data for	metal ion-pairs.	
		(1. Sulphate. 2. Malonate	e. 3 . Phthalate.)	
		ΔH^0 (kcal. mo	ole ⁻¹)	
	Mn	Co	Ni	Zn
1.	3.37	1.74	3.31	4.01
2.	3.53	2.57	1.77	2.98
3.	$2 \cdot 20$	1.87	1.76	3 ·16
		ΔS^{0} (cal. deg. ⁻¹	mole ⁻¹)	
1.	$22 \cdot 6$	16.6	21.7	$24 \cdot 4$
2.	26.8	$25 \cdot 8$	24.8	27.4
3.	19.9	19.2	19.4	$23 \cdot 8$
		$-\Delta S_{\rm hyd}$ (MA) (cal. d	eg. ⁻¹ mole ⁻¹)	
1.	63·4	(71.0)	67.0	67.3
2.	55.9	`61·0´	63·0	$62 \cdot 95$
3.	67.0	71.8	72.6	70.75

In all of these cases of ion-association, in which ionic ligands take part, the enthalpy term is opposing the reaction, which is brought about by the very favourable gain in entropy. It is significant, however, that the heat-change is less unfavourable for cobalt and nickel than for manganese and zinc. It has been found ¹² for transition-metal ions that, if the calculated crystal-field stabilisation energies, obtained from spectroscopic Δ values, are subtracted from their heats of hydration, the resultant hydration energies

⁹ Nair and Nancollas, J., 1958, 3706.

¹⁰ (a) Staveley and Randall, Discuss. Faraday Soc., 1958, 26, 157; (b) Latimer, "Oxidation Potentials," Prentice-Hall Inc., New York, 1953.

¹¹ Nair and Nancollas, J., 1958, 3706; 1959, 3934.
¹² L. E. Orgel, "An Introduction to Transition-Metal Chemistry. Ligand-field Theory," Methuen, London, 1960, p. 73.

show a linear variation from V²⁺ to Zn²⁺. Similarly, it may be seen that the ligand-field effects will contribute to the increased stability of Co²⁺ and Ni²⁺ complexes, thereby lowering the unfavourable ΔH term, whereas no such ligand-field contribution will take place in the cases of Mn²⁺ and Zn²⁺, which have d^5 and d^{10} structures. The interaction between the metal ion and the ligand in all these cases is mainly electrostatic, and $-\Delta S_{hyd}(MA)$ varies linearly with r_c^{-1} , where r_c is the cationic radius.

College of Advanced Technology, Gosta Green, Birmingham 4.

[Received, July 2nd, 1964.]